• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PROJET DE FIN D'ÉTUDES
    • Trabajos Fin de Máster UVa
    • Voir le document
    •   Accueil de UVaDOC
    • PROJET DE FIN D'ÉTUDES
    • Trabajos Fin de Máster UVa
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/32516

    Título
    Optimización de Parámetros del Algoritmo Genético Multiobjetivo SPEA2 en la Sintonización de TMDs
    Autor
    Escudero Vega, Rodrigo
    Director o Tutor
    Pérez Vázquez, María ElenaAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela de Ingenierías IndustrialesAutoridad UVA
    Año del Documento
    2018
    Titulación
    Máster en Ingeniería Industrial
    Résumé
    El Trabajo de Fin de Máster tiene por objetivo la optimización de los parámetros de un Algoritmo Genético Multiobjetivo (AGMO) en su aplicación a la sintonización de TMD’s. De estudios previos, se sabe que estos algoritmos son de gran utilidad para la resolución de este tipo de problemas. La optimización se realizará mediante el uso de métricas de comparación que permiten discernir qué parámetros obtienen mejores resultados a través del estudio de las fronteras de Pareto que obtiene el algoritmo.
    Materias (normalizadas)
    Algoritmos genéticos
    Departamento
    Departamento de Organización de Empresas y Comercialización e Investigación de Mercados
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/32516
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Máster UVa [7034]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    TFM-I-981.pdf
    Tamaño:
    3.596Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10