Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/33520
Título
Supervised Machine Learning Techniques for Quality of Transmission Assessment in Optical Networks
Autor
Congreso
International Conference on Transparent Optical Networks (ICTON) (20º. 2018. Bucharest)
Año del Documento
2018
Editorial
Institute of Electrical and Electronics Engineers (IEEE)
Descripción
Producción Científica
Documento Fuente
2018 20th International Conference on Transparent Optical Networks (ICTON), 1-5 July 2018, Bucharest, Romania
Abstract
We propose and compare a number of machine learning models to classify unestablished lightpaths into high or low quality of transmission (QoT) categories in impairment-aware wavelength-routed optical networks. The performance of these models is evaluated in long haul communication networks and compared to previous proposals. Results show that, especially random forests and bagging trees approaches, significantly reduce the required computing time to classify the QoT of a given lightpath, while accuracy remains around 99.9%.
Palabras Clave
Aprendizaje automático
Red óptica
Machine learning
Optical network
ISBN
978-1-5386-6605-0
Patrocinador
Ministerio de Ciencia e Innovación (Projects TEC2014-53071- C3 -2- P, TEC2017-84423-C3 -1-P and TEC2015- 71932- REDT)
Version del Editor
Propietario de los Derechos
© 2018 IEEE
Idioma
eng
Derechos
openAccess
Collections
Files in this item