Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/33569
Título
Hermite Functions, Lie Groups and Fourier Analysis
Año del Documento
2018
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Entropy, 2018, 20 (11), 816;
Abstract
In this paper, we present recent results in harmonic analysis in the real line R and in the half-line R+ , which show a closed relation between Hermite and Laguerre functions, respectively, their symmetry groups and Fourier analysis. This can be done in terms of a unified framework based on the use of rigged Hilbert spaces. We find a relation between the universal enveloping algebra of the symmetry groups with the fractional Fourier transform. The results obtained are relevant in quantum mechanics as well as in signal processing as Fourier analysis has a close relation with signal filters. In addition, we introduce some new results concerning a discretized Fourier transform on the circle. We introduce new functions on the circle constructed with the use of Hermite functions with interesting properties under Fourier transformations.
Palabras Clave
Análisis de Fourier
Mecánica cuántica
Fourier analysis
Quantum mechanics
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Industria y Competitividad (Project MTM2014-57129-C2-1-P)
Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA137G18)
Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA137G18)
Version del Editor
Idioma
eng
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Attribution 4.0 International