• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/33626

    Título
    Completeness and Nonclassicality of Coherent States for Generalized Oscillator Algebras
    Autor
    Zelaya, Kevin
    Rosas Ortiz, Óscar
    Blanco García, Zurika
    Cruz y Cruz, Sara
    Año del Documento
    2017
    Documento Fuente
    Adv. Math. Phys 2017 (2017) 7168592
    Résumé
    The purposes of this work are (1) to show that the appropriate generalizations of the oscillator algebra permit the construction of a wide set of nonlinear coherent states in unified form and (2) to clarify the likely contradiction between the nonclassical properties of such nonlinear coherent states and the possibility of finding a classical analog for them since they are 𝑃-represented by a delta function. In (1) we prove that a class of nonlinear coherent states can be constructed to satisfy a closure relation that is expressed uniquely in terms of the Meijer 𝐺-function. This property automatically defines the delta distribution as the 𝑃-representation of such states.Then, in principle, theremust be a classical analog for them. Among other examples, we construct a family of nonlinear coherent states for a representation of the su(1, 1) Lie algebra that is realized as a deformation of the oscillator algebra. In (2), we use a beamsplitter to showthat the nonlinear coherent states exhibit properties like antibunching that prohibit a classical description for them.We also show that these states lack second-order coherence. That is, although the 𝑃-representation of the nonlinear coherent states is a delta function, they are not full coherent.Therefore, the systems associated with the generalized oscillator algebras cannot be considered “classical” in the context of the quantum theory of optical coherence.
    Revisión por pares
    SI
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/33626
    Derechos
    openAccess
    Aparece en las colecciones
    • FM - Artículos de revista [134]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    7168592.pdf
    Tamaño:
    8.501Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10