Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/33630
Título
Poisson-Hopf algebra deformations of Lie-Hamilton systems
Autor
Año del Documento
2018
Documento Fuente
Journal of Physics A: Mathematical and Theoretical, vol. 51 (2018) 065202
Resumen
Hopf algebra deformations are merged with a class of Lie systems of Hamiltonian type, the so-called Lie-Hamilton systems, to devise a novel formalism: the Poisson-Hopf algebra deformations of Lie-Hamilton systems. This approach applies to any Hopf algebra deformation
of any Lie-Hamilton system. Remarkably, a Hopf algebra deformation transforms a Lie-Hamilton system, whose dynamic is governed by a finite-dimensional Lie algebra of functions, into a non-Lie-Hamilton system associated with a Poisson-Hopf algebra of functions that allows for the explicit description of its t-independent constants of the motion from deformed Casimir functions. We illustrate our approach by considering the Poisson-Hopf algebra analogue of the non-standard quantum deformation of sl(2) and its applications to deform well-known Lie-Hamilton systems describing oscillator systems, Milne-Pinney equations, and several types of Riccati equations. In particular, we obtain a new position-dependent mass oscillator system with a time-dependent frequency.
Revisión por pares
SI
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem