Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/33634
Título
On Hamiltonians with position-dependent mass from Kaluza-Klein compactifications
Año del Documento
2017
Descripción
Producción Científica
Documento Fuente
Physics Letters A, vol. 381 (2017) 701
Zusammenfassung
In a recent paper (J.R. Morris, Quant. Stud. Math. Found. 2 (2015) 359), an inhomogeneous
compactification of the extra dimension of a five-dimensional Kaluza-Klein metric has been shown to generate a position-dependent mass (PDM) in the corresponding four-dimensional system. As an application of this dimensional reduction mechanism, a specific static dilatonic scalar field has been connected with a PDM Lagrangian describing a well-known nonlinear PDM oscillator. Here we present more instances of this construction that lead to PDM systems with radial symmetry, and the properties of their corresponding inhomogeneous extra dimensions are compared with the ones in the nonlinear oscillator model. Moreover, it is also shown how the compactification introduced in this type of models can alternatively be interpreted as a novel mechanism for the dynamical generation of curvature.
Revisión por pares
SI
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource