• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/33635

    Título
    Poisson-Lie groups, bi-Hamiltonian systems and integrable deformations
    Autor
    Ballesteros Castañeda, ÁngelAutoridad UVA
    Marrero, Juan C.
    Ravanpak, Zohreh
    Año del Documento
    2017
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Physics A: Mathematical and Theoretical, vol. 50 (2017) 145204 (25pp)
    Abstract
    Given a Lie-Poisson completely integrable bi-Hamiltonian system on R^n, we present a method which allows us to construct, under certain conditions, a completely integrable bi-Hamiltonian deformation of the initial Lie-Poisson system on a non-abelian Poisson-Lie group G_eta of dimension n, where eta \in R is the deformation parameter. Moreover, we show that from the two multiplicative (Poisson-Lie) Hamiltonian structures on G_eta that underly the dynamics of the deformed system and by making use of the group law on G_eta, one may obtain two completely integrable Hamiltonian systems on G_eta x G_eta. By construction, both systems admit reduction, via the multiplication in G_eta, to the deformed bi-Hamiltonian system in G_eta. The previous approach is applied to two relevant Lie-Poisson completely integrable bi-Hamiltonian systems: the Lorenz and Euler top systems.
    Revisión por pares
    SI
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/33635
    Derechos
    openAccess
    Collections
    • FM - Artículos de revista [134]
    Show full item record
    Files in this item
    Nombre:
    1609.07438.pdf
    Tamaño:
    3.364Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10