• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/33638

    Título
    AdS Poisson homogeneous spaces and Drinfel’d doubles
    Autor
    Ballesteros Castañeda, ÁngelAutoridad UVA
    Meusburger, Catherine
    Naranjo, Pedro
    Año del Documento
    2017
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Physics A: Mathematical and Theoretical, vol. 50 (2017) 395202
    Abstract
    The correspondence between Poisson homogeneous spaces over a Poisson-Lie group G and Lagrangian Lie subalgebras of the classical double D(g) is revisited and explored in detail for the case in which g = D(a) is a classical double itself. We apply these results to give an explicit description of some coisotropic 2d Poisson homogeneous spaces over the group SL(2,R) ∼= SO(2, 1), namely 2d anti de Sitter space, 2d hyperbolic space and the lightcone in 3d Minkowski space. We show how each of these spaces is obtained as a quotient with respect to a Poisson-subgroup for one of the three inequivalent Lie bialgebra structures on sl(2,R) and as a coisotropic one for the others. We then construct families of coisotropic Poisson homogeneous structures for 3d anti de Sitter space AdS3 and show that the ones that are quotients by a Poisson subgroup are determined by a three-parameter family of classical r-matrices for so(2, 2), while the non Poisson-subgroup cases are much more numerous. In particular, we present the two Poisson homogeneous structures on AdS3 that arise from two Drinfel’d double structures on SO(2, 2). The first one realises AdS3 as a quotient of SO(2, 2) by the Poisson-subgroup SL(2,R), while the second one, the non-commutative spacetime of the twisted κ-AdS deformation, realises AdS3 as a coisotropic Poisson homogeneous space.
    Revisión por pares
    SI
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/33638
    Derechos
    openAccess
    Collections
    • FM - Artículos de revista [134]
    Show full item record
    Files in this item
    Nombre:
    1701.04902.pdf
    Tamaño:
    339.3Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10