• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/33639

    Título
    Superintegrable systems on 3-dimensional curved spaces: Eisenhart formalism and separability
    Autor
    Cariñena Marzo, José Fernando
    Herranz, F.J.
    Fernández-Rañada Menéndez De Luarca, Manuel
    Año del Documento
    2017
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Mathematical Physics 58, 022701 (2017)
    Abstract
    The Eisenhart geometric formalism, which transforms an Euclidean natural Hamiltonian H = T +V into a geodesic Hamiltonian T with one additional degree of freedom, is applied to the four families of quadratically superintegrable systems with multiple separability in the Euclidean plane. Firstly, the separability and superintegrability of such four geodesic Hamiltonians T_r (r = a, b, c, d) in a three-dimensional curved space are studied and then these four systems are modified with the addition of a potential Ur leading to H_r = T_r +U_r. Secondly, we study the superintegrability of the four Hamiltonians tilde{H}_r = H_r/μ_r, where μ_r is a certain position-dependent mass, that enjoys the same separability as the original system H_r. All the Hamiltonians here studied describe superintegrable systems on non-Euclidean three-dimensional manifolds with a broken spherically symmetry.
    Revisión por pares
    SI
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/33639
    Derechos
    openAccess
    Collections
    • FM - Artículos de revista [134]
    Show full item record
    Files in this item
    Nombre:
    1701.05783.pdf
    Tamaño:
    355.7Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10