• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Otros Documentos (Monografías, Informes, Memorias, Documentos de Trabajo, etc)
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Otros Documentos (Monografías, Informes, Memorias, Documentos de Trabajo, etc)
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/33735

    Título
    D2. 1–Report on Dynamic Data Reconciliation of Large-Scale Processes
    Otros títulos
    Report on Dynamic Data Reconciliation of Large-Scale Processes
    Autor
    Pitarch Pérez, José LuisAutoridad UVA Orcid
    Prada Moraga, César deAutoridad UVA Orcid
    Editor
    EU-SPIRE
    Año del Documento
    2018
    Descripción
    Producción Científica
    Documento Fuente
    J. L. Pitarch and C. de Prada, 2018. D2. 1-Report on dynamic data reconciliation of large-scale processes. Outcomes of the CoPro Project.
    Abstract
    Availability of reliable process information in real time is key in any decision-making procedure. Thus, good industrial decision-support implementations require dealing with gross errors and consideration of process transients in order to get a set of measurements which will be coherent with the basic underlying process dynamics. This report presents dynamic data reconciliation methods and tools adapted to the requirements of industrial environments (large-scale systems and noisy/faulty data). Moreover, basic concepts in literature are extended to artificially increase system redundancy as well as to cope with time-varying parameter estimation. The procedure summarized in this report has been tested in the Lenzing case study.
    Palabras Clave
    Dynamic data reconciliation
    gross errors
    Parameter estimation
    Variables estimation
    Departamento
    Ingeniería de Sistemas y Automática
    Patrocinador
    European Union Horizon 2020 program (grant nº 723575)
    Patrocinador
    info:eu-repo/grantAgreement/EC/H2020/723575
    Version del Editor
    https://www.spire2030.eu/copro
    Propietario de los Derechos
    EU-SPIRE
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/33735
    Derechos
    openAccess
    Collections
    • DEP44 - Otros Documentos (Monografías, Informes, Memorias, Documentos de Trabajo, etc) [5]
    Show full item record
    Files in this item
    Nombre:
    CoPro_D2.1_Report on dynamic data_.pdf
    Tamaño:
    2.400Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-ShareAlike 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution-ShareAlike 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10