Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/33735
Título
D2. 1–Report on Dynamic Data Reconciliation of Large-Scale Processes
Otros títulos
Report on Dynamic Data Reconciliation of Large-Scale Processes
Editor
Año del Documento
2018
Descripción
Producción Científica
Documento Fuente
J. L. Pitarch and C. de Prada, 2018. D2. 1-Report on dynamic data reconciliation of large-scale processes. Outcomes of the CoPro Project.
Resumo
Availability of reliable process information in real time is key in any decision-making procedure. Thus, good industrial decision-support implementations require dealing with gross errors and consideration of process transients in order to get a set of measurements which will be coherent with the basic underlying process dynamics. This report presents dynamic data reconciliation methods and tools adapted to the requirements of industrial environments (large-scale systems and noisy/faulty data). Moreover, basic concepts in literature are extended to artificially increase system redundancy as well as to cope with time-varying parameter estimation. The procedure summarized in this report has been tested in the Lenzing case study.
Palabras Clave
Dynamic data reconciliation
gross errors
Parameter estimation
Variables estimation
Departamento
Ingeniería de Sistemas y Automática
Patrocinador
European Union Horizon 2020 program (grant nº 723575)
Patrocinador
info:eu-repo/grantAgreement/EC/H2020/723575
Version del Editor
Propietario de los Derechos
EU-SPIRE
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-ShareAlike 4.0 International