Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/35894
Título
Nash multiplicities and resolution invariants
Año del Documento
2017
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Collectanea Mathematica, 2017, vol. 68, n. 2, p. 175–217
Résumé
The Nash multiplicity sequence was defined by M. Lejeune-Jalabert as a non-increasing sequence of integers attached to a germ of a curve inside a germ of a hypersurface. M. Hickel generalized this notion and described a sequence of blow ups which allows us to compute it and study its behavior. In this paper, we show how this sequence can be used to compute some invariants that appear in algorithmic resolution of singularities. Moreover, this indicates that these invariants from constructive resolution are intrinsic to the variety since they can be read in terms of its space of arcs. This result is a first step connecting explicitly arc spaces and algorithmic resolution of singularities.
Palabras Clave
Algebra
Resolution of singularities
ISSN
0010-0757
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
© 2017 Springer
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International