Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/35952
Título
Minimal plane valuations
Año del Documento
2018
Editorial
American Mathematical Society
Descripción
Producción Científica
Documento Fuente
Journal of Algebraic Geometry, 2018, vol. 27. p. 751-783
Abstract
We consider the value ˆμ( ) = limm→∞ m−1a(mL), where a(mL) is the last
value of the vanishing sequence of H0(mL) along a divisorial or irrational valuation
centered at OP2,p, L (respectively, p) being a line (respectively, a point) of the projective
plane P2 over an algebraically closed field. This value contains, for valuations,
similar information as that given by Seshadri constants for points. It is always true
that ˆμ( ) ≥ p1/vol( ) and minimal valuations are those satisfying the equality. In
this paper, we prove that the Greuel-Lossen-Shustin Conjecture implies a variation of
the Nagata Conjecture involving minimal valuations (that extends the one stated in [15]
to the whole set of divisorial and irrational valuations of the projective plane) which
also implies the original Nagata’s conjecture. We also provide infinitely many families
of minimal very general valuations with an arbitrary number of Puiseux exponents, and
an asymptotic result that can be considered as evidence in the direction of the above
mentioned conjecture.
Palabras Clave
Plane valuations
Valoración de planos
Algebra
Álgebra
ISSN
1534-7486
Revisión por pares
SI
DOI
Patrocinador
Ministerio de Economía, Industria y Competitividad ( grants MTM2012-36917-C03-03 / MTM2015-65764-C3-2-P / MTM2016-81735- REDT)
Universitat Jaume I (grant P1-1B2015-02)
Universitat Jaume I (grant P1-1B2015-02)
Version del Editor
Propietario de los Derechos
© 2018 American Mathematical Society
Idioma
eng
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International