• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Institutos de Investigación
    • Instituto de Investigación en Matemáticas (IMUVA)
    • IMUVA - Artículos de Revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Institutos de Investigación
    • Instituto de Investigación en Matemáticas (IMUVA)
    • IMUVA - Artículos de Revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/35971

    Título
    Structural properties of minimal strong digraphs versus trees
    Autor
    García López, J.
    Marijuán López, CarlosAutoridad UVA Orcid
    Pozo Coronado, Luis Miguel
    Año del Documento
    2018
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Linear Algebra and its Applications, 2018, vol. 540. p. 203-220
    Abstract
    In this article, we focus on structural properties of minimal strong digraphs (MSDs). We carry out a comparative study of properties of MSDs versus (undirected) trees. For some of these properties, we give the matrix version, regarding nearly reducible matrices. We give bounds for the coefficients of the characteristic polynomial corresponding to the adjacency matrix of trees, and we conjecture bounds for MSDs. We also propose two different representations of an MSD in terms of trees (the union of a spanning tree and a directed forest; and a double directed tree whose vertices are given by the contraction of connected Hasse diagrams).
    Palabras Clave
    Digraphs - Discrete mathematics
    Dígrafos - Matemáticas discretas
    Trees - Discrete mathematics
    Árboles - Matemáticas discretas
    Characteristic polynomial
    Polinomios característicos
    Reducible matrices
    Matrices reducibles
    ISSN
    0024-3795
    Revisión por pares
    SI
    DOI
    10.1016/j.laa.2017.11.027
    Patrocinador
    Ministerio de Economía, Industria y Competitividad ( grant MTM2015-65764-C3-1-P)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0024379517306559?via%3Dihub
    Propietario de los Derechos
    © 2018 Elsevier
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/35971
    Derechos
    openAccess
    Collections
    • IMUVA - Artículos de Revista [107]
    Show full item record
    Files in this item
    Nombre:
    Properties-of-minimal-strong.pdf
    Tamaño:
    457.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10