• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • STUDIENABSCHLUSSARBEITEN
    • Trabajos Fin de Grado UVa
    • Dokumentanzeige
    •   UVaDOC Startseite
    • STUDIENABSCHLUSSARBEITEN
    • Trabajos Fin de Grado UVa
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/36038

    Título
    Métodos de optimización convexa en aprendizaje automático
    Autor
    Vielba Iglesias, Álvaro
    Director o Tutor
    Barrio Tellado, Eustasio delAutoridad UVA
    Editor
    Universidad de Valladolid. Facultad de CienciasAutoridad UVA
    Año del Documento
    2019
    Titulación
    Grado en Matemáticas
    Zusammenfassung
    Muchos métodos clásicos de aprendizaje supervisado, en contextos de regresión o de clasificación, presentan comportamientos problemáticos en el análisis de datos de alta dimensión, cada vez más frecuentes en las aplicaciones. Desde la introducción de los métodos SVM (Cortés y Vapnik, 1995) y lasso (Tibshirani, 1996) muchos métodos de aprendizaje se han adaptado al contexto de alta dimensión mediante la penalización de las funciones criterio clásicas con términos adicionales orientados a conseguir mejores propiedades estadísticas de los estimadores resultantes (mayor estabilidad, dispersión, adaptación, etc). Desde un punto de vista computacional, el cálculo de las reglas de aprendizaje anteriores se reduce a un problema de optimización convexa. Los métodos clásicos de solución numérica (de descenso por gradiente o de tipo Newton) pueden ser adaptados para aprovechar la estructura especial de algunos de estos problemas, lo que posibilita el tratamiento eficiente de grandes conjuntos de datos. En este trabajo se explorarán algunas de las técnicas recientes desarrolladas en este campo para la resolución numérica de problemas de aprendizaje automático, con atención especial a las capaces de tratar con funciones criterio no suaves (tal como la correspondiente al lasso), capaces de aprovechar representaciones estocásticas de la función objetivo.
    Palabras Clave
    Aprendizaje automático
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/36038
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Grado UVa [30977]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    TFG-G3547.pdf
    Tamaño:
    931.1Kb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10