Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/36080
Título
Foliations by curves uniquely determined by minimal subschemes of its singularities
Año del Documento
2018
Editorial
Worldwide Center of Mathematics LLC
Descripción
Producción Científica
Documento Fuente
Journal of Singularities, 2018, vol. 18. p. 105-113
Résumé
It is well-known that a foliation by curves of degree greater than or equal to two, with isolated singularities, in the complex projective space of dimension greater than or equal to two, is uniquely determined by the scheme of its singular points. The main result in this paper is that the set of foliations which are uniquely determined by a subscheme (of the minimal possible degree) of its singular points, contains a nonempty Zariski-open subset. Our results hold in the projective space defined over any algebraically closed ground field.
Palabras Clave
Foliations by curves
Foliaciones por curvas
Singular points
Puntos singulares
ISSN
1949-2006
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
© 2018 Worldwide Center of Mathematics LLC
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International