• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Economía Aplicada
    • DEP20 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Economía Aplicada
    • DEP20 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/36229

    Título
    Preference aggregation and DEA: An analysis of the methods proposed to discriminate efficient candidates
    Autor
    Llamazares Rodríguez, BonifacioAutoridad UVA Orcid
    Peña García, María TeresaAutoridad UVA Orcid
    Año del Documento
    2009
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    European Journal of Operational Research, 2009, vol. 197, n. 2, p. 714-721.
    Abstract
    There are different ways to allow the voters to express their preferences on a set of candidates. In ranked voting systems, each voter selects a subset of the candidates and ranks them in order of preference. A well-known class of these voting systems are scoring rules, where fixed scores are assigned to the different ranks and the candidates with the highest score are the winners. One of the most important issues in this context is the choice of the scoring vector, since the winning candidate can vary according to the scores used. To avoid this problem, Cook and Kress [W.D. Cook, M. Kress, A data envelopment model for aggregating preference rankings, Management Science 36 (11) (1990) 1302–1310], using a DEA/AR model, proposed to assess each candidate with the most favorable scoring vector for him/her. However, the use of this procedure often causes several candidates to be efficient, i.e., they achieve the maximum score. For this reason, several methods to discriminate among efficient candidates have been proposed. The aim of this paper is to analyze and show some drawbacks of these methods.
    Palabras Clave
    Scoring rules
    Data Envelopment Analysis
    ISSN
    0377-2217
    Revisión por pares
    SI
    DOI
    10.1016/j.ejor.2008.06.031
    Patrocinador
    Ministerio de Educación y Ciencia (Projects SEJ2006-04267 and MTM2005-06534) y FEDER
    Junta de Castilla y León (Consejería de Educación y Cultura, Projects VA040A05, VA099/04 and VA002B08)
    Version del Editor
    https://doi.org/10.1016/j.ejor.2008.06.031
    Propietario de los Derechos
    Elsevier
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/36229
    Derechos
    restrictedAccess
    Collections
    • DEP20 - Artículos de revista [181]
    Show full item record
    Files in this item
    Nombre:
    2009EJOR.pdf
    Tamaño:
    172.1Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10