• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Comunicaciones a congresos, conferencias, etc.
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Comunicaciones a congresos, conferencias, etc.
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/36806

    Título
    A Sum-Of-Squares Constrained Regression Approach for Process Modeling
    Autor
    Pitarch Pérez, José LuisAutoridad UVA Orcid
    Sala, Antonio
    Prada Moraga, César deAutoridad UVA Orcid
    Congreso
    12th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS 2019
    Año del Documento
    2019
    Editorial
    Elsevier
    Descripción Física
    6 p.
    Descripción
    Producción Científica
    Documento Fuente
    12th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS 2019: Florianópolis, Brazil, 23–26 April 2019 Edited by Benoit Chachuat, Olivier Bernard, Julio E. Normey-Rico
    Resumo
    Combining empirical relationships with a backbone of first-principle laws allow the modeler to transfer the available process knowledge into a model. In order to get such so-called grey-box models, data reconciliation methods and constrained regression algorithms are key to obtain reliable process models that will be used later for optimization. However, the existent approaches require solving a semi-infinite constrained regression nonlinear problem, which is usually done numerically by an iterative procedure alternating between a relaxed problem and an a posteriori check for constraint violation. This paper proposes an alternative one-stage efficient approach for polynomial regression models based in sum-of-squares (convex) programming. Moreover, it is shown how several desirable features on the regression model can be naturally enforced in this optimization framework. The effectiveness of the proposed approach is illustrated through an academic example provided in the related literature.
    Palabras Clave
    Constrained regression
    Process models
    Grey-box models
    SOS programming
    DOI
    10.1016/j.ifacol.2019.06.152
    Patrocinador
    European Union, Horizon 2020 research and innovation programme under grant agreement No 723575 (CoPro)
    MINECO DPI2016-81002-R (AEI/FEDER)
    Patrocinador
    info:eu-repo/grantAgreement/EC/H2020/723575
    Version del Editor
    https://doi.org/10.1016/j.ifacol.2019.06.152
    Propietario de los Derechos
    Elsevier
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/36806
    Tipo de versión
    info:eu-repo/semantics/updatedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP44 - Comunicaciones a congresos, conferencias, etc. [44]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    PostprintsVersion.pdf
    Tamaño:
    701.3Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución-NoComercial-CompartirIgual 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Atribución-NoComercial-CompartirIgual 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10