• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PROJET DE FIN D'ÉTUDES
    • Trabajos Fin de Grado UVa
    • Voir le document
    •   Accueil de UVaDOC
    • PROJET DE FIN D'ÉTUDES
    • Trabajos Fin de Grado UVa
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/37827

    Título
    Análisis FINGRAMS de modelos de regresión basados en reglas difusas
    Autor
    González de Rivera Flores, Eduardo
    Director o Tutor
    Sáinz Palmero, Gregorio IsmaelAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela de Ingenierías IndustrialesAutoridad UVA
    Año del Documento
    2019
    Titulación
    Grado en Ingeniería en Organización Industrial
    Résumé
    En este proyecto se aplica la metodología FINGRAMS para caracterizar las reglas difusas de modelos basados en Sistemas Difusos Basados en Reglas (SDBR). En este caso se trata de caracterizar las reglas seleccionadas y las no seleccionadas en un proceso de optimización de los métodos difusos SDBR generados con distintos Datasets y optimizados a través de un algoritmo genético en base a métricas de precisión, interpretabilidad y relevancia. De este modo, el objetivo del proyecto es determinar la importancia de las reglas de entrada al SDBR a través del análisis de los indicadores de interpretabilidad COV y COFCI, obtenidos de los algoritmos genéticos, con ayuda de tablas y gráficos, y con ello obtener reglas generales de comportamiento del sistema empleando la metodología FINGRAMS
    Materias (normalizadas)
    Lógica difusa
    Departamento
    Departamento de Ingeniería de Sistemas y Automática
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/37827
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Grado UVa [30857]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    TFG-I-1315.pdf
    Tamaño:
    2.068Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10