Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/37936
Título
Fully Discrete Approximations to the Time-Dependent Navier–Stokes Equations with a Projection Method in Time and Grad-Div Stabilization
Año del Documento
2019
Documento Fuente
Journal of Scientific Computing. 80 (2019), 1330-1368
Résumé
This paper studies fully discrete approximations to the evolutionary Navier{
Stokes equations by means of inf-sup stable H1-conforming mixed nite elements
with a grad-div type stabilization and the Euler incremental projection method in
time. We get error bounds where the constants do not depend on negative powers
of the viscosity. We get the optimal rate of convergence in time of the projection
method. For the spatial error we get a bound O(hk) for the L2 error of the velocity,
k being the degree of the polynomials in the velocity approximation. We prove
numerically that this bound is sharp for this method.
ISSN
0885-7474
Revisión por pares
SI
Patrocinador
MINECO grant MTM2016-78995-P (AEI)
Junta de Castilla y León grant VA024P17
Junta de Castilla y León grant VA105G18
MINECO grant MTM2015-65608-P
Junta de Castilla y León grant VA024P17
Junta de Castilla y León grant VA105G18
MINECO grant MTM2015-65608-P
Idioma
spa
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document