• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/37954

    Título
    On nonparaxial nonlinear Schrödinger-type equations
    Autor
    Cano Urdiales, BegoñaAutoridad UVA Orcid
    Durán Martín, ÁngelAutoridad UVA Orcid
    Año del Documento
    2019
    Documento Fuente
    Journal of Computational and Applied Mathematics *, *, p. *-*
    Résumé
    In this paper the one-dimensional nonparaxial nonlinear Schrödinger equation is considered. This was proposed as an alternative to the classical nonlinear Schrödinger equation in those situations where the assumption of paraxiality may fail. The paper contributes to the mathematical properties of the equation in a two-fold way. First, some theoretical results on linear well-posedness, Hamiltonian and multi-symplectic formulations are derived. Then we propose to take into account these properties in order to deal with the numerical approximation. In this sense, different numerical procedures that preserve the Hamiltonian and multi-symplectic structures are discussed and illustrated with numerical experiments.
    Revisión por pares
    SI
    DOI
    10.1016/j.cam.2019.02.029
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/37954
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP51 - Artículos de revista [145]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    BC_AD-NNLS2018_v8.pdf
    Tamaño:
    206.3Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10