• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/38655

    Título
    Generating actionable predictions regarding MOOC learners’ engagement in peer reviews
    Autor
    Er, ErkanAutoridad UVA Orcid
    Gómez Sánchez, EduardoAutoridad UVA Orcid
    Bote Lorenzo, Miguel LuisAutoridad UVA Orcid
    Dimitriadis Damoulis, IoannisAutoridad UVA Orcid
    Asensio Pérez, Juan IgnacioAutoridad UVA Orcid
    Año del Documento
    2019
    Editorial
    Taylor & Francis Group
    Descripción
    Producción Científica
    Documento Fuente
    Behaviour & Information Technology, in press, 2019
    Abstract
    Peer review is one approach to facilitate formative feedback exchange in MOOCs; however, it is often undermined by low participation. To support effective implementation of peer reviews in MOOCs, this research work proposes several predictive models to accurately classify learners according to their expected engagement levels in an upcoming peer-review activity, which offers various pedagogical utilities (e.g. improving peer reviews and collaborative learning activities). Two approaches were used for training the models: in situ learning (in which an engagement indicator available at the time of the predictions is used as a proxy label to train a model within the same course) and transfer across courses (in which a model is trained using labels obtained from past course data). These techniques allowed producing predictions that are actionable by the instructor while the course still continues, which is not possible with post-hoc approaches requiring the use of true labels. According to the results, both transfer across courses and in situ learning approaches have produced predictions that were actionable yet as accurate as those obtained with cross validation, suggesting that they deserve further attention to create impact in MOOCs with real-world interventions. Potential pedagogical uses of the predictions were illustrated with several examples.
    Palabras Clave
    Engagement prediction
    Predicción del compromiso
    MOOC (Massive Open Online Course)
    CEMA (Curso En Línea Masivo y Abierto)
    Peer review
    Revisión por pares
    In situ learning
    Aprendizaje in situ
    ISSN
    1362-3001
    Revisión por pares
    SI
    DOI
    10.1080/0144929X.2019.1669222
    Patrocinador
    European Union’s Horizon 2020 research and innovation programme (Marie Sklodowska-Curie grant 793317)
    Ministerio de Ciencia, Innovación y Universidades (projects TIN2017-85179-C3-2-R / TIN2014-53199-C3-2-R)
    Junta de Castilla y León (grant VA257P18)
    Comisión Europea (grant 588438-EPP-1-2017-1-EL-EPPKA2-KA)
    Patrocinador
    info:eu-repo/grantAgreement/EC/H2020/793317
    Version del Editor
    https://www.tandfonline.com/doi/full/10.1080/0144929X.2019.1669222
    Propietario de los Derechos
    © 2019 Informa UK Limited
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/38655
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Collections
    • DEP71 - Artículos de revista [358]
    Show full item record
    Files in this item
    Nombre:
    Generating-act-predictions-MOOC-.pdf
    Tamaño:
    1.702Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10