• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/39065

    Título
    Error Analysis of Non Inf-sup Stable Discretizations of the time-dependent Navier--Stokes Equations with Local Projection Stabilization
    Autor
    Frutos Baraja, Francisco Javier deAutoridad UVA Orcid
    García Archilla, Juan Bosco
    John, Volker
    Novo, Julia
    Año del Documento
    2019
    Documento Fuente
    IMA Journal of Numerical Analysis 39(4), 2019, 1747-1786
    Abstract
    This paper studies non inf-sup stable nite element approximations to the evolutionary Navier{Stokes equations. Several local projection stabilization (LPS) methods corresponding to di erent stabilization terms are analyzed, thereby separately studying the e ects of the di erent stabilization terms. Error estimates are derived in which the constants in the error bounds are independent of inverse powers of the viscosity. For one of the methods, using velocity and pressure nite elements of degree l, it will be proved that the velocity error in L1(0; T;L2( )) decays with rate l + 1=2 in the case that h, with being the dimensionless viscosity and h the mesh width. In the analysis of another method, it was observed that the convective term can be bounded in an optimal way with the LPS stabilization of the pressure gradient. Numerical studies con rm the analytical results.
    Revisión por pares
    SI
    DOI
    10.1093/imanum/dry044.
    Patrocinador
    MTM2016-78995-P
    VA024P17
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/39065
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Collections
    • DEP51 - Artículos de revista [145]
    Show full item record
    Files in this item
    Nombre:
    lps_NS_submission.pdf
    Tamaño:
    484.1Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10