• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/39073

    Título
    Exponential quadrature rules without order reduction for integrating linear initial boundary value problems
    Autor
    Cano Urdiales, BegoñaAutoridad UVA Orcid
    Moreta, María Jesús
    Año del Documento
    2018
    Documento Fuente
    SIAM Journal on Numerical Analysis 56-3, p. 1187-1209, 2018
    Abstract
    In this paper a technique is suggested to integrate linear initial boundary value problems with exponential quadrature rules in such a way that the order in time is as high as possible. A thorough error analysis is given for both the classical approach of integrating the problem rstly in space and then in time and of doing it in the reverse order in a suitable manner. Time-dependent boundary conditions are considered with both approaches and full discretization formulas are given to implement the methods once the quadrature nodes have been chosen for the time integration and a particular (although very general) scheme is selected for the space discretization. Numerical experiments are shown which corroborate that, for example, with the suggested technique, order 2s is obtained when choosing the s nodes of Gaussian quadrature rule.
    Revisión por pares
    SI
    Propietario de los Derechos
    Society for Industrial and Applied Mathematics Become a Member Login Get Involved
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/39073
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Collections
    • DEP51 - Artículos de revista [145]
    Show full item record
    Files in this item
    Nombre:
    cuad_exp_SIAMbb_rev.pdf
    Tamaño:
    450.8Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10