Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/39346
Título
Aplicación de imágenes de satélites y datos LiDAR en la modelización de recursos forestales
Otros títulos
Forest resource modelling combining satellite imagery and LiDAR data
Autor
Director o Tutor
Editor
Año del Documento
2019
Titulación
Doctorado en Conservación y Uso Sostenible de Sistemas Forestales
Abstract
El sector forestal tiene un papel relevante en la transición hacia una economía innovadora y eficiente en el consumo de sus recursos. Conocer la disponibilidad espacial de los recursos forestales y su evolución temporal es crítico en la gestión forestal, tanto de los recursos maderables como de los no maderables. El uso de información procedente de sensores remotos se está convirtiendo en una opción cada vez más rigurosa y asequible para el desarrollo de esta tarea. Así, el conocimiento que estas herramientas proporcionan sobre el estado de desarrollo de las masas forestales y la disponibilidad de sus recursos permite hacer frente a los diferentes escenarios futuros que plantea el actual contexto de cambio global. Esta tesis caracteriza y evalúa diferentes recursos forestales mediante la combinación de información continua procedente de imágenes de satélite y datos LiDAR, con diferentes niveles de resolución espacial y espectral. Estos datos, apoyados en trabajo de campo, han sido calibrados y validados, demostrando un gran potencial. Discriminar diferentes especies y tipos de masa, tanto a nivel de árbol individual como de objeto, son objetivos alcanzables mediante el uso adecuado de estas herramientas, disminuyendo la dependencia histórica del trabajo de campo e integrando el cambio de escala en los inventarios tradicionales. Esta tesis desarrolla herramientas robustas capaces de evaluar recursos forestales a gran escala mediante modelos mixtos lineales y técnicas de modelización basadas en aprendizaje automático. Forestry sector plays an important role in the transition towards a new economy,
driven by efficient resource consumption. Understanding the spatial distribution
of forest resources and its temporal evolution is critical in forest management,
both for timber and non-timber resources. Remote sensing information is
becoming an increasingly precise and affordable option for the
accomplishment of this task. The knowledge provided by these tools regarding
stand development and availability of resources enables predicting future
global change scenarios.
This Doctoral Thesis assesses different forest resources combining continuous
information derived from satellite images and LiDAR data at different spatial and
spectral resolution levels. This information, supported by field work, has been
calibrated and validated, showing a great potential. Species and stand types
discrimination, both at individual tree and object levels, can be accomplished
with these tools, decreasing the historical dependence of field work and
integrating the scale change in traditional inventories. This PhD work aims to
develop robust tools able to evaluate large-scale forest resources, by means of
linear mixed models and machine learning.
Materias (normalizadas)
Productos forestales
Materias Unesco
2506.16 Teledetección (Geología)
1203.04 Inteligencia Artificial
Departamento
Departamento de Producción Vegetal y Recursos Forestales
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
- Tesis doctorales UVa [2321]
Files in this item
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional