• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/39469

    Título
    Foliaciones de codimensión uno Newton no degeneradas
    Autor
    Molina Samper, BeatrizAutoridad UVA
    Director o Tutor
    Cano Torres, FelipeAutoridad UVA
    Alonso González, Clementa
    Editor
    Universidad de Valladolid. Facultad de CienciasAutoridad UVA
    Año del Documento
    2019
    Titulación
    Doctorado en Matemáticas
    Abstract
    The main topic of this research is the study of “Newton non-degenerate codimension one foliations”. The non-degenerate singularities for hypersurfaces have been described classically by A. Kouchnirenko in [35]; let us give a quick description of them.We consider a germ of hypersurface in (Cn, 0), defined locally by a reduced equation f = 0 in local coordinates z = (z1, z2, . . . , zn). We take the Taylor’s expansion of f, we consider the convex hull of the 2 Rn 0 such that 6= 0 and we add to it the first orthant Rn 0. In this way it is obtained the Newton polyhedron 1 of f. We consider its compact boundary and we say that a singularity is “non-degenerate” if the coefficients are “generic” in a sense that we will define later. This class of singularities is open and dense in the space of coefficients when is fixed. Also M. Oka does a study in [36] of the non-degenerate singularities for the case of complete intersections. Taking a logarithmic point of view, we can define a Newton polyhedron associated to a germ of differential form or vector field, once we fix a system of coordinates. From a more geometrical approach, the fact of considering a normal crossings divisor in the ambient space determines the coordinates we are going to consider. On this way, we can define not just a single polyhedron, but a whole polyhedra system, each one associated to one of the strata naturally given by the divisor as we will see in Chapter 2. A foliated space consists of a codimension one foliation F in a complex analytic space M, together with a normal crossings divisor E M. Most of the definitions, properties and results we present in this work concerns the foliated space (M,E,F) and not just to the foliation F. In the general theory established in Chapter 4, we introduce the concept of “Newton non-degenerate foliated space” which, of course, coincides with the classical one for germs of hypersurfaces, when we consider germs of foliations having a holomorphic first integral. On the other hand, once we have a normal crossings divisor in the ambient space, we can talk about “combinatorial blowing-ups”. They are blowing-ups centered at the closure of one of the strata determined by the divisor. We extend the definition introduced by M.I.T. Camacho and F. Cano in [9] and we say that a codimension one foliation is of “toric type” if we obtain only “simple points” after a combinatorial sequence of blowing-ups, that is, if it has a “combinatorial desingularization”.
    Materias (normalizadas)
    Foliaciones (Matemáticas)
    Superficies (Matemáticas)
    Departamento
    Departamento de Algebra, Geometría y Topología
    DOI
    10.35376/10324/39469
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/39469
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • Tesis doctorales UVa [2367]
    Show full item record
    Files in this item
    Nombre:
    Tesis1643-191125.pdf
    Tamaño:
    3.390Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10