Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/39594
Título
Invariant subspaces of the periodic Navier–Stokes and magnetohydrodynamics equations: Symmetries and inverse cascades
Autor
Año del Documento
2000
Editorial
American Institute of Physics
Descripción
Producción Científica
Documento Fuente
Journal of Mathematical Physics 41, 6193 (2000)
Abstract
It is shown that when the initial condition and the forcing term of the periodic Navier–Stokes or magnetohydrodynamics equations have Fourier coefficients which vanish outside a certain semigroup of frequencies, the same happens to the solutions for all time. Subgroups of frequencies correspond to solutions possessing certain symmetries. By taking as a semigroup the frequencies whose Fourier components are non-negative integers, we get a class of solutions for which the higher modes do not influence the evolution of the lower ones; therefore, the phenomenon of inverse cascading cannot occur for them.
Palabras Clave
Magnetohydrodynamics
Navier Stokes equations
Fourier analysis
ISSN
0022-2488
Revisión por pares
SI
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional