• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/39596

    Título
    Uniform estimates on the velocity in Rayleigh–Bénard convection
    Autor
    Núñez Jiménez, ManuelAutoridad UVA
    Año del Documento
    2005
    Editorial
    American Institute of Physics
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Mathematical Physics 46, 033102 (2005)
    Abstract
    The kinetic energy of a fluid located between two plates at different temperatures is easily bounded by classical inequalities. However, experiments and numerical simulations indicate that when the convection is turbulent, the volume of the domains in which the speed is large, is rather small. This could imply that the maximum of the speed, in contrast with its quadratic mean, does not admit an a priori upper bound. It is proved that, provided the pressure remains bounded, a uniform estimate for the speed maximum does indeed exist, and that it depends on the maxima of certain ratios between temperature, pressure, and velocity.
    Palabras Clave
    Thermal diffusion
    Thermodynamic states and processes
    Algebraic geometry
    Probability theory
    Computer simulation
    Boundary integral methods
    Flow instabilities
    Mathematical modeling
    Boussinesq approximation
    Newtonian mechanics
    ISSN
    0022-2488
    Revisión por pares
    SI
    DOI
    10.1063/1.1855400
    Version del Editor
    https://aip.scitation.org/doi/10.1063/1.1855400
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/39596
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Collections
    • DEP96 - Artículos de revista [95]
    Show full item record
    Files in this item
    Nombre:
    Rayleigh-Benard.pdf
    Tamaño:
    179.5Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10