Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/39596
Título
Uniform estimates on the velocity in Rayleigh–Bénard convection
Autor
Año del Documento
2005
Editorial
American Institute of Physics
Descripción
Producción Científica
Documento Fuente
Journal of Mathematical Physics 46, 033102 (2005)
Résumé
The kinetic energy of a fluid located between two plates at different temperatures is easily bounded by classical inequalities. However, experiments and numerical simulations indicate that when the convection is turbulent, the volume of the domains in which the speed is large, is rather small. This could imply that the maximum of the speed, in contrast with its quadratic mean, does not admit an a priori upper bound. It is proved that, provided the pressure remains bounded, a uniform estimate for the speed maximum does indeed exist, and that it depends on the maxima of certain ratios between temperature, pressure, and velocity.
Palabras Clave
Thermal diffusion
Thermodynamic states and processes
Algebraic geometry
Probability theory
Computer simulation
Boundary integral methods
Flow instabilities
Mathematical modeling
Boussinesq approximation
Newtonian mechanics
ISSN
0022-2488
Revisión por pares
SI
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional