Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40088
Título
Dirac-Weyl equation on a hyperbolic graphene surface under perpendicular magnetic fields
Año del Documento
2020
Documento Fuente
Physica E: Low-dimensional Systems and Nanostructures 118 (2020) 113926.
Résumé
In this paper the Dirac-Weyl equation on a hyperbolic surface of graphene under magnetic fields is considered. In order to solve this equation analytically for some
cases, we will deal with vector potentials symmetric under rotations around the z axis. Instead of using tetrads we will get this equation from a more intuitive point of view by restriction from the Dirac-Weyl equation of an ambient space. The eigenvalues and corresponding eigenfunctions for some magnetic fields are found by means of the factorization method. The existence of a zero energy ground level and its degeneracy is also analysed in relation to the Aharonov-Casher theorem valid for
at graphene.
Revisión por pares
SI
Idioma
eng
Tipo de versión
info:eu-repo/semantics/draft
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document