• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40094

    Título
    Asymmetric kink scattering in a two-component scalar field theory model
    Autor
    Alonso Izquierdo, Alberto
    Año del Documento
    2019
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Communications in Nonlinear Science and Numerical Simulation, 2019, vol. 75. p. 200-219
    Résumé
    In this paper the kink scattering in a two-component scalar field theory model in (1+1)-Minkowskian space-time is addressed. The potential term U(fi_1; fi_2) is given by a polynomial of fourth degree in the first field component and of sixth degree in the second one. The novel characteristic of this model is that the kink variety describes two different types of extended particles. These particles are characterized by its topological charge but also by a new feature determined by a discrete charge L = 0,1,-1. For this reason, the kink scattering involves a very rich variety of processes, which comprises kink annihilation, reflection, charge exchange, transmutation, etc. It has been found that not only the final velocity of the scattered kinks, but also the final nature of the emerging lumps after the collision are very sensitive on the initial velocities. Asymmetric scattering processes arise when Type I and Type II particles are obliged to collide. In this case, ten different final scenarios are possible. Symmetric scattering events are also discussed.
     
    In this paper the kink scattering in a two-component scalar field theory model in (1+1)-Minkowskian space-time is addressed. The potential term U(ϕ1, ϕ2) is given by a polynomial of fourth degree in the first field component and of sixth degree in the second one. The novel characteristic of this model is that the kink variety describes two different types of extended particles. These particles are characterized by its topological charge but also by a new feature determined by a discrete charge . For this reason, the kink scattering involves a very rich variety of processes, which comprises kink annihilation, reflection, charge exchange, transmutation, etc. It has been found that not only the final velocity of the scattered kinks, but also the final nature of the emerging lumps after the collision are very sensitive on the initial velocities. Asymmetric scattering processes arise when Type I and Type II particles are obliged to collide. In this case, ten different final scenarios are possible. Symmetric scattering events are also discussed.
    Palabras Clave
    Field theories
    Teoría de campos
    ISSN
    1007-5704
    Revisión por pares
    SI
    DOI
    10.1016/j.cnsns.2019.04.001
    Patrocinador
    Ministerio de Economía, Ciencia y Competitividad (grant MTM2014-57129-C2-1-P)
    Junta de Castilla y Leon (grant VA057U16)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S100757041930098X?via%3Dihub
    Propietario de los Derechos
    © 2019 Elsevier
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/40094
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • FM - Artículos de revista [134]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    1901.03089.pdf
    Tamaño:
    1.312Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10