Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40098
Título
On the Equivalence Between Type I Liouville Dynamical Systems in the Plane and the Sphere
Año del Documento
2019
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
In S. Kuru, J. Negro and L.M. Nieto (eds.), Integrability, Supersymmetry and Coherent States. A volume in honour of Professor Véronique Hussin. CRM Series in Mathematical Physics (Berlin: Springer, 2019), pp. 359-373.
Résumé
Separable Hamiltonian systems either in sphero-conical coordinates on an S2 sphere or in elliptic coordinates on a R2 plane are described in a unified way. A back and forth route connecting these Liouville Type I separable systems is unveiled. It is shown how the gnomonic projection and its inverse map allow us to pass from a Liouville Type I separable system with a spherical configuration space
to its Liouville Type I partners where the configuration space is a plane and back. Several selected spherical separable systems and their planar cousins are discussed in a classical context.
Revisión por pares
SI
Idioma
eng
Tipo de versión
info:eu-repo/semantics/draft
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document