• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40136

    Título
    Improved Bounds on the Threshold Gap in Ramp Secret Sharing
    Autor
    Cascudo, Ignacio
    Gundersen, Jaron Skovsted
    Ruano Benito, DiegoAutoridad UVA Orcid
    Año del Documento
    2019
    Documento Fuente
    I. Cascudo, J.S. Gundersen, D. Ruano: Improved Bounds on the Threshold Gap in Ramp Secret Sharing. IEEE Transactions on Information Theory. Volume 65, Issue 7, pages 4620-4633 (2019)
    Résumé
    In this paper, we consider linear secret sharing schemes over a finite field F q , where the secret is a vector in Fℓ q and each of the n shares is a single element of F q . We obtain lower bounds on the so-called threshold gap g of such schemes, defined as the quantity r-t where r is the smallest number such that any subset of r shares uniquely determines the secret and t is the largest number such that any subset of t shares provides no information about the secret. Our main result establishes a family of bounds which are tighter than previously known bounds for ℓ ≳ 2 . Furthermore, we also provide bounds, in terms of n and q , on the partial reconstruction and privacy thresholds, a more fine-grained notion that considers the amount of information about the secret that can be contained in a set of shares of a given size. Finally, we compare our lower bounds with known upper bounds in the asymptotic setting.
    ISSN
    0018-9448
    Revisión por pares
    SI
    DOI
    10.1109/TIT.2019.2902151
    Patrocinador
    This work is supported by the Danish Council for Independent Research, grant DFF-4002- 00367, the Spanish Ministry of Economy/FEDER: grants MTM2015-65764-C3-2-P, MTM2015-69138- REDT, and RYC-2016-20208 (AEI/FSE/UE), and Junta de CyL (Spain): grant VA166G18
    Version del Editor
    https://ieeexplore.ieee.org/document/8654006
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/40136
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Aparece en las colecciones
    • IMUVA - Artículos de Revista [104]
    • DEP96 - Artículos de revista [95]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    IEEE2019eprint3.pdf
    Tamaño:
    566.5Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10