Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40199
Título
Weak topologies for Carathéodory differential equations: continuous dependence, exponential dichotomy and attractors
Año del Documento
2019
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Journal of Dynamics and Differential Equations 31 (2019), 1617-1651.
Zusammenfassung
We introduce new weak topologies and spaces of Carathéodory functions where the solutions of the ordinary differential equations depend continuously on the initial data and vector fields. The induced local skew-product flow is proved to be continuous, and a notion of linearized skew-product flow is provided. Two applications are shown. First, the propagation of the exponential dichotomy over the trajectories of the linearized skew-product flow and the structure of the dichotomy or Sacker–Sell spectrum. Second, how particular bounded absorbing sets for the process defined by a Carathéodory vector field f provide bounded pullback attractors for the processes with vector fields in the alpha-limit set, the omega-limitset or the whole hull of f. Conditions for the existence of a pullback or a global attractor for the skew-product semiflow, as well as application examples are also given.
Palabras Clave
Non-autonomous Carathéodory differential equations, Linearized skew-product flow, Exponential dichotomy, Pullback and forward attractors
ISSN
1040-7294
Revisión por pares
SI
Patrocinador
MINECO/FEDER Grant MTM2015-66330-P
H2020-MSCA-ITN-2014 643073 CRITICS
H2020-MSCA-ITN-2014 643073 CRITICS
Patrocinador
info:eu-repo/grantAgreement/EC/H2020/643073
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource