• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40199

    Título
    Weak topologies for Carathéodory differential equations: continuous dependence, exponential dichotomy and attractors
    Autor
    Longo, Iacopo Paolo
    Novo, SylviaAutoridad UVA Orcid
    Obaya, RafaelAutoridad UVA
    Año del Documento
    2019
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Dynamics and Differential Equations 31 (2019), 1617-1651.
    Abstract
    We introduce new weak topologies and spaces of Carathéodory functions where the solutions of the ordinary differential equations depend continuously on the initial data and vector fields. The induced local skew-product flow is proved to be continuous, and a notion of linearized skew-product flow is provided. Two applications are shown. First, the propagation of the exponential dichotomy over the trajectories of the linearized skew-product flow and the structure of the dichotomy or Sacker–Sell spectrum. Second, how particular bounded absorbing sets for the process defined by a Carathéodory vector field f provide bounded pullback attractors for the processes with vector fields in the alpha-limit set, the omega-limitset or the whole hull of f. Conditions for the existence of a pullback or a global attractor for the skew-product semiflow, as well as application examples are also given.
    Palabras Clave
    Non-autonomous Carathéodory differential equations, Linearized skew-product flow, Exponential dichotomy, Pullback and forward attractors
    ISSN
    1040-7294
    Revisión por pares
    SI
    DOI
    10.1007/s10884-018-9710-y
    Patrocinador
    MINECO/FEDER Grant MTM2015-66330-P
    H2020-MSCA-ITN-2014 643073 CRITICS
    Patrocinador
    info:eu-repo/grantAgreement/EC/H2020/643073
    Version del Editor
    https://link.springer.com/content/pdf/10.1007/s10884-018-9710-y.pdf
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/40199
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Collections
    • DEP51 - Artículos de revista [145]
    Show full item record
    Files in this item
    Nombre:
    JDDE-D-17-00323(25-09-2018).pdf
    Tamaño:
    544.2Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10