Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40501
Título
On the solvability of the Yakubovich linear-quadratic infinite horizon minimization problem
Año del Documento
2019
Documento Fuente
Annali di Matematica Pura e Applicata - DOI: 10.1007/s10231-019-00939-5
Abstract
The Yakubovich Frequency Theorem, in its periodic version and in its general
nonautonomous extension, establishes conditions which are equivalent to
the global solvability of a minimization problem of infinite horizon type,
given by the integral in the positive half-line of a quadratic functional
subject to a control system. It also provides the unique minimizing pair
\lq\lq solution, control\rq\rq~and
the value of the minimum. In this paper we establish less restrictive conditions
under which the problem is partially solvable, characterize the set of
initial data for which the minimum exists, and obtain its value as well a
minimizing pair. The occurrence of exponential dichotomy and the
null character of the rotation number for a nonautonomous
linear Hamiltonian system defined
from the minimization problem are fundamental in the analysis.
ISSN
0373-3114
Revisión por pares
SI
Patrocinador
Ministerio de Economía y Competitividad / FEDER, MTM2015-66330-P
Ministerio de Ciencia, Innovación y Universidades, RTI2018-096523-B-I00
European Commission, H2020-MSCA-ITN-2014
INDAM -- GNAMPA Project 2018
Ministerio de Ciencia, Innovación y Universidades, RTI2018-096523-B-I00
European Commission, H2020-MSCA-ITN-2014
INDAM -- GNAMPA Project 2018
Patrocinador
info:eu-repo/grantAgreement/EC/H2020/
Idioma
spa
Tipo de versión
info:eu-repo/semantics/draft
Derechos
openAccess
Aparece en las colecciones
Files in questo item