• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40565

    Título
    Machine learning and the digital era from a Process Systems Engineering perspective
    Autor
    Pitarch Pérez, José LuisAutoridad UVA Orcid
    Prada Moraga, César deAutoridad UVA Orcid
    Congreso
    10th EUROSIM Congress on Modelling and Simulation
    Año del Documento
    2019
    Editorial
    ARGESIM
    Descripción Física
    12
    Descripción
    Producción Científica
    Documento Fuente
    Emilio Jiménez, Juan Ignacio Latorre (eds.), 10th EUROSIM Congress, La Rioja, Logroño, Spain, July 1-5, 2019
    Resumen
    Modern sensorization, communication and computational technolo-gies provide collecting and storing huge amounts of raw data from large cyber-physical systems. These data should serve as the basis to take better decisions at all levels (from the design to operation and management). Nevertheless, raw data needs to be transformed in useful information, usually in the form of prediction models. Machine learning plays thus a key role in this task. The process industry is not alien to this digital transformation, although large processing plants present particularities that differentiate them from other systems. These differences, if neglected, can make machine learning for general purpose fail in extracting the right information from data, leading thus to unreliable process models. As such models are the basis on which the ideas towards the cognitive plant rely, this issue is of key importance for a successful full digitalization of the process industry. Here we discuss these aspects, as well as the more suitable machine-learning ap-proaches, through our experience in an industrial case study.
    Materias (normalizadas)
    Modelling
    Simulation
    Machine learning
    Palabras Clave
    Data conditioning
    Process modeling
    Data reconciliation
    Constrained regression
    Grey-box models
    ISBN
    978-3-901608-92-6
    DOI
    10.11128/arep.58
    Patrocinador
    This research received funding from the EU Horizon 2020 research and innovation programme under Grant No. 723575 (CoPro) and from the Spanish MICINN with FEDER funds (PGC2018-099312-B-C31)
    Patrocinador
    info:eu-repo/grantAgreement/EC/H2020/723575
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/40565
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP44 - Comunicaciones a congresos, conferencias, etc. [44]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Eurosim2019_paper_23.pdf
    Tamaño:
    5.063Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    CC0 1.0 UniversalLa licencia del ítem se describe como CC0 1.0 Universal

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10