Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40699
Título
Time exponential splitting integrator for the Klein–Gordon equation with free parameters in the Hagstrom–Warburton absorbing boundary conditions
Año del Documento
2018
Documento Fuente
Journal of Computational and Applied Mathematics Volume 333, 1 May 2018, Pages 185-199
Resumo
The Klein–Gordon equation on an infinite two dimensional strip is considered. Numerical computation is reduced to a finite domain by using the Hagstrom–Warburton (H–W) absorbing boundary conditions (ABCs) with free parameters in the formulation of the auxiliary variables. The spatial discretization is achieved by using fourth order finite differences and the time integration is made by means of an efficient and easy to implement fourth order exponential splitting scheme which was used in Alonso-Mallo and Portillo (2016) considering the fixed Padé parameters in the formulation of the ABCs. Here, we generalize the splitting time technique to other choices of the parameters. To check the timeintegrator we consider, on one hand, fourty peso ffixed parameters, the Newmann’s parameters, the Chebyshev’s parameters, the Padé’s parameters and optimal parameters proposed in Hagstrom et al. (2007) and, on the other hand, an adaptive scheme for the dynamic control of the order of absorption and the parameters. We study the efficiency of the splitting scheme by comparing with thefourth-order four-stage Runge–Kutta method.
Revisión por pares
SI
Patrocinador
MTM2015-66837-P del Ministerio de Economía y Competitividad
Idioma
spa
Tipo de versión
info:eu-repo/semantics/draft
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item