• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40700

    Título
    High-order full discretization for anisotropic wave equations
    Autor
    Portillo de la Fuente, Ana MaríaAutoridad UVA
    Año del Documento
    2018
    Editorial
    Elsevier
    Documento Fuente
    Applied Mathematics and Computation Volume 323, 15 April 2018, Pages 1-16
    Résumé
    Two-dimensional linear wave equation in anisotropic media, on a rectangular domain with initial conditions and periodic boundary conditions, is considered. The energy of the problem is contemplated. The space discretization is reached by means of finite differences on a uniform grid, paying attention to the mixed derivative of the equation. The discrete energy of the semi-discrete problem is introduced. For the time integration of the system of ordinary differential equations obtained, a fourth order exponential splitting method, which is a geometric integrator, is proposed. This time integrator is efficient and easy to implement. The stability condition for time step and space step ratio is deduced. Numerical experiments displaying the good behavior in the long time integration and the efficiency of the numerical solution are provided.
    Revisión por pares
    SI
    DOI
    10.1016/j.amc.2017.11.045
    Patrocinador
    MTM2015-66837-P del Ministerio de Economía y Competitividad
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/40700
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP51 - Artículos de revista [147]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    PortilloAMC2018Anisotropic.pdf
    Tamaño:
    538.9Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10