• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40701

    Título
    Near conserving energy numerical schemes for two-dimensional coupled seismic wave equations
    Autor
    Portillo de la Fuente, Ana MaríaAutoridad UVA
    Año del Documento
    2018
    Editorial
    Elsevier
    Documento Fuente
    Computers & Mathematics with Applications Volume 75, Issue 3, 1 February 2018, Pages 1016-1037
    Abstract
    Two-dimensional coupled seismic waves, satisfying the equations of linear isotropic elasticity, on a rectangular domain with initial conditions and periodic boundary conditions, are considered. A quantity conserved by the solution of the continuous problem is used to check the numerical solution of the problem. Second order spatial derivatives, in the x direction, in the y direction and mixed derivative, are approximated by finite differences on a uniform grid. The ordinary second order in time system obtained is transformed into a first order in time system in the displacement and velocity vectors. For the time integration of this system, second order and fourth order exponential splitting methods, which are geometric integrators, are proposed. These explicit splitting methods are not unconditionally stable and the stability condition for time step and space step ratio is deduced. Numerical experiments displaying the good behavior in the long time integration and the efficiency of the numerical solution are provided.
    Revisión por pares
    SI
    DOI
    10.1016/j.camwa.2017.10.032
    Patrocinador
    MTM2015-66837-P del Ministerio de Economía y Competitividad
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/40701
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Collections
    • DEP51 - Artículos de revista [147]
    Show full item record
    Files in this item
    Nombre:
    PortilloCAMWA2018Nearconserving.pdf
    Tamaño:
    453.2Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10