• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40701

    Título
    Near conserving energy numerical schemes for two-dimensional coupled seismic wave equations
    Autor
    Portillo de la Fuente, Ana MaríaAutoridad UVA
    Año del Documento
    2018
    Editorial
    Elsevier
    Documento Fuente
    Computers & Mathematics with Applications Volume 75, Issue 3, 1 February 2018, Pages 1016-1037
    Resumen
    Two-dimensional coupled seismic waves, satisfying the equations of linear isotropic elasticity, on a rectangular domain with initial conditions and periodic boundary conditions, are considered. A quantity conserved by the solution of the continuous problem is used to check the numerical solution of the problem. Second order spatial derivatives, in the x direction, in the y direction and mixed derivative, are approximated by finite differences on a uniform grid. The ordinary second order in time system obtained is transformed into a first order in time system in the displacement and velocity vectors. For the time integration of this system, second order and fourth order exponential splitting methods, which are geometric integrators, are proposed. These explicit splitting methods are not unconditionally stable and the stability condition for time step and space step ratio is deduced. Numerical experiments displaying the good behavior in the long time integration and the efficiency of the numerical solution are provided.
    Revisión por pares
    SI
    DOI
    10.1016/j.camwa.2017.10.032
    Patrocinador
    MTM2015-66837-P del Ministerio de Economía y Competitividad
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/40701
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP51 - Artículos de revista [147]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    PortilloCAMWA2018Nearconserving.pdf
    Tamaño:
    453.2Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10