• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40716

    Título
    The mechanics of solid-state nanofoaming
    Autor
    Van Loock, Frederik
    Bernardo García, VictoriaAutoridad UVA
    Rodríguez Pérez, Miguel ÁngelAutoridad UVA Orcid
    Fleck, Norman A.
    Año del Documento
    2019
    Documento Fuente
    Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences Volume 475, Issue 2230, 2019
    Zusammenfassung
    Solid-state nanofoaming experiments are conducted on two polymethyl methacrylate (PMMA) grades of markedly different molecular weight using CO2 as the blowing agent. The sensitivity of porosity to foaming time and foaming temperature is measured. Also, the microstructure of the PMMA nanofoams is characterized in terms of cell size and cell nucleation density. A one-dimensional numerical model is developed to predict the growth of spherical, gas-filled voids during the solid-state foaming process. Diffusion of CO2 within the PMMA matrix is sufficiently rapid for the concentration of CO2 to remain almost uniform spatially. The foaming model makes use of experimentally calibrated constitutive laws for the uniaxial stress versus strain response of the PMMA grades as a function of strain rate and temperature, and the effect of dissolved CO2 is accounted for by a shift in the glass transition temperature of the PMMA. The maximum achievable porosity is interpreted in terms of cell wall tearing and comparisons are made between the predictions of the model and nanofoaming measurements; it is deduced that the failure strain of the cell walls is sensitive to cell wall thickness
    ISSN
    1364-5021
    Revisión por pares
    SI
    DOI
    10.1098/rspa.2019.0339
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/40716
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Aparece en las colecciones
    • BioEcoUVa - Artículos de revista [196]
    • DEP32 - Artículos de revista [284]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    rspa.2019.0339.pdf
    Tamaño:
    1.490Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10