Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40734
Título
Structural and spectral properties of minimal strong digraphs
Año del Documento
2016
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Electronic Notes in Discrete Mathematics, 2016, vol. 54. p. 91-96
Résumé
In this article, we focus on structural and spectral properties of minimal strong
digraphs (MSDs). We carry out a comparative study of properties of MSDs versus
trees. This analysis includes two new properties. The first one gives bounds on
the coefficients of characteristic polynomials of trees (double directed trees), and
conjectures the generalization of these bounds to MSDs. As a particular case, we
prove that the independent coemcient of the characteristic polynomial of a tree or
an MSD must be — 1, 0 or 1. For trees, this fact means that a tree has at most one
perfect matching; for MSDs, it means that an MSD has at most one covering by
disjoint cycles. The property states that every MSD can be decomposed in a rooted
spanning tree and a forest of reversed rooted trees, as factors. In our opinión, the
analogies described suppose a significative change in the traditional point of view
about this class of digraphs.
Palabras Clave
Digraphs
Dígrafos
Trees
Árboles
Characteristic polynomial
Polinomio característico
ISSN
1571-0653
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Industria y Competitividad (project MTM2015-65764-C3-1-P)
Version del Editor
Propietario de los Derechos
© 2016 Elsevier
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional