• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Institutos de Investigación
    • Instituto de Investigación en Matemáticas (IMUVA)
    • IMUVA - Artículos de Revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Institutos de Investigación
    • Instituto de Investigación en Matemáticas (IMUVA)
    • IMUVA - Artículos de Revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40734

    Título
    Structural and spectral properties of minimal strong digraphs
    Autor
    Marijuán López, CarlosAutoridad UVA Orcid
    García López, Jesús
    Pozo Coronado, Luis Miguel
    Año del Documento
    2016
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Electronic Notes in Discrete Mathematics, 2016, vol. 54. p. 91-96
    Resumo
    In this article, we focus on structural and spectral properties of minimal strong digraphs (MSDs). We carry out a comparative study of properties of MSDs versus trees. This analysis includes two new properties. The first one gives bounds on the coefficients of characteristic polynomials of trees (double directed trees), and conjectures the generalization of these bounds to MSDs. As a particular case, we prove that the independent coemcient of the characteristic polynomial of a tree or an MSD must be — 1, 0 or 1. For trees, this fact means that a tree has at most one perfect matching; for MSDs, it means that an MSD has at most one covering by disjoint cycles. The property states that every MSD can be decomposed in a rooted spanning tree and a forest of reversed rooted trees, as factors. In our opinión, the analogies described suppose a significative change in the traditional point of view about this class of digraphs.
    Palabras Clave
    Digraphs
    Dígrafos
    Trees
    Árboles
    Characteristic polynomial
    Polinomio característico
    ISSN
    1571-0653
    Revisión por pares
    SI
    DOI
    10.1016/j.endm.2016.09.017
    Patrocinador
    Ministerio de Economía, Industria y Competitividad (project MTM2015-65764-C3-1-P)
    Version del Editor
    https://www.sciencedirect.com/science/article/abs/pii/S1571065316301111
    Propietario de los Derechos
    © 2016 Elsevier
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/40734
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • IMUVA - Artículos de Revista [103]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    Structural-and-spectral-properties.pdf
    Tamaño:
    963.3Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10