• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Institutos de Investigación
    • Instituto de Investigación en Matemáticas (IMUVA)
    • IMUVA - Artículos de Revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Institutos de Investigación
    • Instituto de Investigación en Matemáticas (IMUVA)
    • IMUVA - Artículos de Revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40736

    Título
    Are algebraic links in the Poincaré sphere determined by their Alexander polynomials?
    Autor
    Campillo López, AntonioAutoridad UVA
    Delgado de la Mata, FélixAutoridad UVA Orcid
    Gusein-Zade, Sabir M.
    Año del Documento
    2020
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    Mathematische Zeitschrift, 2020, vol. 294. p. 593-613
    Abstract
    The Alexander polynomial in several variables is defined for links in three-dimensional homology spheres, in particular, in the Poincaré sphere: the intersection of the surface S={(z1,z2,z3)∈C3:z51+z32+z23=0} with the 5-dimensional sphere S5ε={(z1,z2,z3)∈C3:|z1|2+|z2|2+|z3|2=ε2}. An algebraic link in the Poincaré sphere is the intersection of a germ of a complex analytic curve in (S, 0) with the sphere S5ε of radius ε small enough. Here we discuss to which extent the Alexander polynomial in several variables of an algebraic link in the Poincaré sphere determines the topology of the link. We show that, if the strict transform of a curve in (S, 0) does not intersect the component of the exceptional divisor corresponding to the end of the longest tail in the corresponding E8-diagram, then its Alexander polynomial determines the combinatorial type of the minimal resolution of the curve and therefore the topology of the corresponding link. The Alexander polynomial of an algebraic link in the Poincaré sphere is determined by the Poincaré series of the filtration defined by the corresponding curve valuations. (They coincide with each other for a reducible curve singularity and differ by the factor (1−t) for an irreducible one.) We show that, under conditions similar to those for curves, the Poincaré series of a collection of divisorial valuations determines the combinatorial type of the minimal resolution of the collection.
    Palabras Clave
    Algebraic links
    Conexiones algebráicas
    Poincaré sphere
    Esfera de Poincaré
    Alexander polynomial
    Polinomio de Alexander
    ISSN
    1432-1823
    Revisión por pares
    SI
    DOI
    10.1007/s00209-019-02282-0
    Patrocinador
    Ministerio de Economía, Industria y Competitividad - Fondo Europeo de Desarrollo Regional (grant MTM2015-365764-C3-1-P)
    Russian Science Foundation (grant 16-11-10018)
    Version del Editor
    https://link.springer.com/article/10.1007/s00209-019-02282-0
    Propietario de los Derechos
    © 2020 Springer
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/40736
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Collections
    • IMUVA - Artículos de Revista [108]
    Show full item record
    Files in this item
    Nombre:
    Algebraic-links-in-Poincaré-sphere.pdf
    Tamaño:
    207.6Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10