• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40858

    Título
    Groups, Special Functions and Rigged Hilbert Spaces
    Autor
    Celeghini, EnricoAutoridad UVA
    Gadella Urquiza, ManuelAutoridad UVA Orcid
    Olmo Martínez, Mariano Antonio delAutoridad UVA Orcid
    Año del Documento
    2019
    Documento Fuente
    Axioms 2019, vol. 8, 89
    Résumé
    We show that Lie groups and their respective algebras, special functions and rigged Hilbert spaces are complementary concepts that coexist together in a common framework and that they are aspects of the same mathematical reality. Special functions serve as bases for infinite dimensional Hilbert spaces supporting linear unitary irreducible representations of a given Lie group. These representations are explicitly given by operators on the Hilbert space H and the generators of the Lie algebra are represented by unbounded self-adjoint operators. The action of these operators on elements of continuous bases is often considered. These continuous bases do not make sense as vectors in the Hilbert space; instead, they are functionals on the dual space, Φ×, of a rigged Hilbert space, Φ ⊂ H ⊂ Φ×. In fact, rigged Hilbert spaces are the structures in which both, discrete orthonormal and continuous bases may coexist. We define the space of test vectors Φ and a topology on it at our convenience, depending on the studied group. The generators of the Lie algebra can often be continuous operators on Φ with its own topology, so that they admit continuous extensions to the dual Φ× and, therefore, act on the elements of the continuous basis. We investigate this formalism for various examples of interest in quantum mechanics. In particular, we consider SO(2) and functions on the unit circle, SU(2) and associated Laguerre functions, Weyl–Heisenberg group and Hermite functions, SO(3, 2) and spherical harmonics, su(1, 1) and Laguerre functions, su(2, 2) and algebraic Jacobi functions and, finally, su(1, 1) ⊕ su(1, 1) and Zernike functions on a circle.
    Revisión por pares
    SI
    DOI
    10.3390/axioms8030089
    Version del Editor
    https://www.mdpi.com/2075-1680/8/3/89
    Propietario de los Derechos
    © 2019 by the authors
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/40858
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • FM - Artículos de revista [134]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    122(1).pdf
    Tamaño:
    418.4Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Atribución 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10