• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40888

    Título
    Rate-induced tipping and saddle-node bifurcation for quadratic differential equations with nonautonomous asymptotic dynamics
    Autor
    Longo, Iacopo Paolo
    Núñez Jiménez, María del CarmenAutoridad UVA Orcid
    Obaya, RafaelAutoridad UVA
    Rasmussen, Martin
    Año del Documento
    2020
    Documento Fuente
    Sometido a publicación
    Abstract
    An in-depth analysis of nonautonomous bifurcations of saddle-node type for scalar differential equations $x'=-x^2+q(t)\,x+p(t)$, where $q\colon\R\to\R$ and $p\colon\R\to\R$ are bounded and uniformly continuous, is fundamental to explain the absence or occurrence of rate-induced tipping for the differential equation $y' =(y-(2/\pi)\arctan(ct))^2+p(t)$ as the rate $c$ varies on $[0,\infty)$. A classical attractor-repeller pair, whose existence for $c=0$ is assumed, may persist for any $c>0$, or disappear for a certain critical rate $c=c_0$, giving rise to rate-induced tipping. A suitable example demonstrates that this tipping phenomenon may be reversible.
    Palabras Clave
    Critical transition
    Nonautonomous bifurcation
    Nonautonomous dynamical systems
    Pullback attractor
    Pullback repeller
    Rate-induced tipping
    Skew product flow
    Revisión por pares
    SI
    Patrocinador
    Marie Skłodowska-Curie grant agreement No 643073
    Ministerio de Ciencia, Innovación y Universidades, RTI2018-096523-B-I00
    Marie Skłodowska-Curie grant agreement No 754462
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/40888
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Collections
    • DEP51 - Artículos de revista [147]
    Show full item record
    Files in this item
    Nombre:
    RateIndTipping.pdf
    Tamaño:
    1.071Mb
    Formato:
    Adobe PDF
    Descripción:
    Artículo
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10