Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40888
Título
Rate-induced tipping and saddle-node bifurcation for quadratic differential equations with nonautonomous asymptotic dynamics
Año del Documento
2020
Documento Fuente
Sometido a publicación
Abstract
An in-depth analysis of nonautonomous bifurcations of saddle-node
type for scalar differential equations $x'=-x^2+q(t)\,x+p(t)$,
where $q\colon\R\to\R$ and $p\colon\R\to\R$ are bounded and uniformly
continuous, is fundamental to explain the absence or occurrence of
rate-induced tipping for the differential equation
$y' =(y-(2/\pi)\arctan(ct))^2+p(t)$ as the rate $c$ varies on $[0,\infty)$.
A classical attractor-repeller pair, whose existence for $c=0$ is assumed,
may persist for any $c>0$, or disappear for a certain critical rate $c=c_0$,
giving rise to rate-induced tipping. A suitable example demonstrates that
this tipping phenomenon may be reversible.
Palabras Clave
Critical transition
Nonautonomous bifurcation
Nonautonomous dynamical systems
Pullback attractor
Pullback repeller
Rate-induced tipping
Skew product flow
Revisión por pares
SI
Patrocinador
Marie Skłodowska-Curie grant agreement No 643073
Ministerio de Ciencia, Innovación y Universidades, RTI2018-096523-B-I00
Marie Skłodowska-Curie grant agreement No 754462
Ministerio de Ciencia, Innovación y Universidades, RTI2018-096523-B-I00
Marie Skłodowska-Curie grant agreement No 754462
Idioma
eng
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
openAccess
Collections
Files in this item