• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Grupos de Investigación
    • Entornos de Computación Avanzada y Sistemas de Interacción Multimodal (ECA-SIMM)
    • ECA-SIMM - Capítulos de Monografías
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Grupos de Investigación
    • Entornos de Computación Avanzada y Sistemas de Interacción Multimodal (ECA-SIMM)
    • ECA-SIMM - Capítulos de Monografías
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/41028

    Título
    Feature selection in a low cost signature recognition system based on normalized signatures and fractional distances
    Autor
    Vivaracho Pascual, Carlos EnriqueAutoridad UVA Orcid
    Pascual Gaspar, Juan Manuel
    Cardeñoso Payo, ValentínAutoridad UVA Orcid
    Año del Documento
    2009
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    Tistarelli, M.; Nixon, M.S. (eds). Advances in Biometrics: Third International Conference of Biometrics 2009. Berlin: Springer, 2009, p. 1209-1218
    Zusammenfassung
    In a previous work a new proposal for an efficient on-line signature recognition system with very low computational load and storage requirements was presented. This proposal is based on the use of size normalized signatures, which allows for similarity estimation, usually based on DTW or HMMs, to be performed by an easy distance calcultaion between vectors, which is computed using fractional distance. Here, a method to select representative features from the normalized signatures is presented. Only the most stable features in the training set are used for distance estimation. This supposes a larger reduction in system requirements, while the system performance is increased. The verification task has been carried out. The results achieved are about 30% and 20% better with skilled and random forgeries, respectively, than those achieved with a DTW-based system, with storage requirements between 15 and 142 times lesser and a processing speed between 274 and 926 times greater. The security of the system is also enhanced as only the representative features need to be stored, it being impossible to recover the original signature from these.
    Materias Unesco
    2405 Biometría
    Palabras Clave
    Signature recognition system
    Sistema de reconocimiento de firma
    Feature selection
    Selección de caracteres
    ISBN
    978-3-642-01793-3
    Patrocinador
    Junta de Castilla y Leon (project VA077A08)
    Version del Editor
    https://link.springer.com/chapter/10.1007/978-3-642-01793-3_122
    Propietario de los Derechos
    © 2009 Springer
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/41028
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • ECA-SIMM - Capítulos de Monografías [3]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    Feature-selection-in-low-cost-signature-recognition.pdf
    Tamaño:
    197.6Kb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Attribution-NonCommercial-NoDerivs 3.0 UnportedSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivs 3.0 Unported

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10