Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/42437
Título
Model-Based Clustering with Determinant-and-Shape Constraints
Año del Documento
2020
Documento Fuente
Statistics and Computing 30, 1363-1380 (2020)
Zusammenfassung
Model-based approaches to cluster analysis and mixture modeling often involve maximizing classification and mixture likelihoods. Without appropriate constrains on the scatter matrices of the components, these maximizations result in ill-posed problems. Moreover, without constrains, non-interesting or “spurious” clusters are often detected by the EM and CEM algorithms traditionally used for the maximization of the likelihood criteria. Considering an upper bound on the maximal ratio between the determinants of the scatter matrices seems to be a sensible way to overcome these problems by affine equivariant constraints. Unfortunately, problems still arise without also controlling the elements of the “shape” matrices.
A new methodology is proposed that allows both control of the scatter matrices determinants and also the shape matrices elements. Some theoretical justification is given. A fast algorithm is proposed for this doubly constrained maximization. The methodology is also extended to robust model-based clustering problems.
Revisión por pares
SI
Patrocinador
Spanish Ministerio de Economía y Competitividad, Grant MTM2017-86061-C2-1-P, and by Consejería de Educación de la Junta de Castilla y León and FEDER, Grant VA005P17 and VA002G18.
Propietario de los Derechos
Springer Science+Business Media, LLC, part of Springer Nature 2020
Idioma
spa
Tipo de versión
info:eu-repo/semantics/draft
Derechos
restrictedAccess
Aparece en las colecciones
Dateien zu dieser Ressource