• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/42437

    Título
    Model-Based Clustering with Determinant-and-Shape Constraints
    Autor
    García Escudero, Luis ÁngelAutoridad UVA Orcid
    Mayo Iscar, AgustínAutoridad UVA Orcid
    Riani, Marco
    Año del Documento
    2020
    Documento Fuente
    Statistics and Computing 30, 1363-1380 (2020)
    Résumé
    Model-based approaches to cluster analysis and mixture modeling often involve maximizing classification and mixture likelihoods. Without appropriate constrains on the scatter matrices of the components, these maximizations result in ill-posed problems. Moreover, without constrains, non-interesting or “spurious” clusters are often detected by the EM and CEM algorithms traditionally used for the maximization of the likelihood criteria. Considering an upper bound on the maximal ratio between the determinants of the scatter matrices seems to be a sensible way to overcome these problems by affine equivariant constraints. Unfortunately, problems still arise without also controlling the elements of the “shape” matrices. A new methodology is proposed that allows both control of the scatter matrices determinants and also the shape matrices elements. Some theoretical justification is given. A fast algorithm is proposed for this doubly constrained maximization. The methodology is also extended to robust model-based clustering problems.
    Revisión por pares
    SI
    DOI
    10.1007/s11222-020-09950-w
    Patrocinador
    Spanish Ministerio de Economía y Competitividad, Grant MTM2017-86061-C2-1-P, and by Consejería de Educación de la Junta de Castilla y León and FEDER, Grant VA005P17 and VA002G18.
    Propietario de los Derechos
    Springer Science+Business Media, LLC, part of Springer Nature 2020
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/42437
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP24 - Artículos de revista [78]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    deter_shape.pdf
    Tamaño:
    743.9Ko
    Formato:
    Adobe PDF
    Descripción:
    Borrador
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10